Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Cell Prolif ; : e13634, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494923

RESUMO

Differentiation of human embryonic stem cells (hESCs) into human embryonic stem cells-derived parathyroid-like cells (hESC-PT) has clinical significance in providing new therapies for congenital and acquired parathyroid insufficiency conditions. However, a highly reproducible, well-documented method for parathyroid differentiation remains unavailable. By imitating the natural process of parathyroid embryonic development, we proposed a new hypothesis about the in vitro differentiation of parathyroid-like cells. Transcriptome, differentiation marker protein detection and parathyroid hormone (PTH) secretion assays were performed after the completion of differentiation. To optimize the differentiation protocol and further improve the differentiation rate, we designed glial cells missing transcription factor 2 (GCM2) overexpression lentivirus transfection assays and constructed hESCs-derived parathyroid organoids. The new protocol enabled hESCs to differentiate into hESC-PT. HESC-PT cells expressed PTH, GCM2 and CaSR proteins, low extracellular calcium culture could stimulate hESC-PT cells to secrete PTH. hESC-PT cells overexpressing GCM2 protein secreted PTH earlier than their counterpart hESC-PT cells. Compared with the two-dimensional cell culture environment, hESCs-derived parathyroid organoids secreted more PTH. Both GCM2 lentiviral transfection and three-dimensional cultures could make hESC-PT cells functionally close to human parathyroid cells. Our study demonstrated that hESCs could differentiate into hESC-PT in vitro, which paves the road for applying the technology to treat hypoparathyroidism and introduces new approaches in the field of regenerative medicine.

2.
Int Immunopharmacol ; 131: 111846, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38520787

RESUMO

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, essential for cellular communication, orchestrates a myriad of physiological and pathological processes. Recently, the intricate association between the pathway's dysregulation and the progression of malignant tumors has garnered increasing attention. Nevertheless, there is no systematic summary detailing the anticancer effects of molecules targeting the JAK/STAT pathway in the context of tumor progression. This review offers a comprehensive overview of pharmaceutical agents targeting the JAK/STAT pathway, encompassing phytochemicals, synthetic drugs, and biomolecules. These agents can manifest their anticancer effects through various mechanisms, including inhibiting proliferation, inducing apoptosis, suppressing tumor metastasis, and angiogenesis. Notably, we emphasize the clinical challenges of drug resistance while spotlighting the potential of integrating JAK/STAT inhibitors with other therapies as a transformative approach in cancer treatment. Moreover, this review delves into the avant-garde strategy of employing nanocarriers to enhance the solubility and bioavailability of anticancer drugs, significantly amplifying their therapeutic prowess. Through this academic exploration of the multifaceted roles of the JAK/STAT pathway in the cancer milieu, we aim to sketch a visionary trajectory for future oncological interventions.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Carcinogênese
3.
Biochem Soc Trans ; 52(1): 29-39, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38305688

RESUMO

Accurate chromosome segregation in mitosis relies on sister kinetochores forming stable attachments to microtubules (MTs) extending from opposite spindle poles and establishing biorientation. To achieve this, erroneous kinetochore-MT interactions must be resolved through a process called error correction, which dissolves improper kinetochore-MT attachment and allows new interactions until biorientation is achieved. The Aurora B kinase plays key roles in driving error correction by phosphorylating Dam1 and Ndc80 complexes, while Mps1 kinase, Stu2 MT polymerase and phosphatases also regulate this process. Once biorientation is formed, tension is applied to kinetochore-MT interaction, stabilizing it. In this review article, we discuss the mechanisms of kinetochore-MT interaction, error correction and biorientation. We focus mainly on recent insights from budding yeast, where the attachment of a single MT to a single kinetochore during biorientation simplifies the analysis of error correction mechanisms.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Cinetocoros , Microtúbulos/genética , Mitose , Segregação de Cromossomos , Proteínas de Saccharomyces cerevisiae/genética
4.
Hum Brain Mapp ; 45(2): e26575, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339909

RESUMO

Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure-function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure-function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure-function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure-function decoupling. PRACTITIONER POINTS: Structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High-level hierarchical structure-function decoupling contributes much more than low-level decoupling to individual cognition. Structure-function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.


Assuntos
Conectoma , Neocórtex , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Neocórtex/diagnóstico por imagem
5.
Medicine (Baltimore) ; 103(8): e37191, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394505

RESUMO

RATIONALE: Previous studies have found that the main treatment of sinus arrest is pacemaker treatment. It is rare to have 12 s of sinus arrest after radiofrequency ablation, and whether a permanent pacemaker is implanted immediately in this case is not described in the guidelines. PATIENT CONCERNS: A 76-year-old male patient with persistent atrial fibrillation (AF) developed sinus arrest lasting 12 s in the early morning of the fourth day after using radiofrequency ablation for pulmonary vein isolation. DIAGNOSIS: The patient was diagnosed with AF and sinus arrest. INTERVENTIONS: The patient received cardiopulmonary resuscitation, intravenous injection of atropine 1 mg, and intravenous infusion of isoproterenol 1mg and immediately recovered consciousness thereafter. Approximately, 1.5 h later, the patient underwent surgery to install a temporary pacemaker in the right femoral vein. OUTCOMES: The patient had repeated episodes of sinus arrest after the implantation of a temporary pacemaker. After 3 weeks, the patient stabilized and was discharged. The patient was followed up for 1 year and did not experience any recurrence of sinus arrest or AF. LESSONS: We consider the potential for postoperative myocardial edema, injury to the sinoatrial node during the procedure, propafenone poisoning, and autonomic dysfunction as contributors to the occurrence of sinus arrest after radiofrequency ablation. When sinus arrest occurs after radiofrequency ablation, we can choose the appropriate treatment according to the patient's condition.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ablação por Cateter , Doenças Genéticas Inatas , Parada Cardíaca , Átrios do Coração/anormalidades , Bloqueio Cardíaco , Ablação por Radiofrequência , Masculino , Humanos , Idoso , Resultado do Tratamento , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fibrilação Atrial/diagnóstico , Parada Cardíaca/cirurgia
6.
ACS Appl Mater Interfaces ; 16(3): 3442-3450, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226589

RESUMO

Morphology of the absorber plays a decisive role in photoelectric conversion efficiency (PCE) of kersterite solar cells. Cu2ZnSn(S,Se)4 (CZTSSe) grain prepared from dimethyl sulfoxide (DMSO)-based solution easily grows into large grains, which can lead to the formation of some holes at the back of the absorber. These holes cause the recombination of photocarriers and greatly weaken the performance of CZTSSe devices. Here, trace amounts of thioglycolic acid (TGA) are introduced to the DMSO-based solution, and a combination of TGA and metal is formed in the absorber, leading to the formation of fine grains in the CZTSSe absorber. Next, post-annealing (PA) in a N2 atmosphere is performed to promote Na diffusion, helping the transition from a fine-grain layer to a low-resistivity carbon layer at the interface between CZTSSe and Mo and avoiding the drawbacks of the DMSO-based system. Finally, the champion PCE of the CZTSSe device can be improved to 10.05% from 8.06%. The conclusions demonstrate that the construction of a carbon layer can boost the performance of CZTSSe devices.

7.
Dalton Trans ; 53(4): 1517-1527, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38164102

RESUMO

Three novel copper Schiff base complexes, L1Cu(OAc)-L3Cu(OAc), bearing NNO tridentate ligands were synthesized and successfully entrapped in zeolite. All free and encapsulated complexes were fully characterized through experiments combined with theoretical calculations, and were subsequently employed as catalysts to activate H2O2 for degradation of methylene blue (MB). The catalytic activity of free complexes was tunable by substitution effects. The complex L3Cu(OAc) displayed enhanced efficiency by adopting bulky and donor substitutions due to the lower oxidation states. However, the free complexes exhibited modified structural and catalytic properties upon encapsulation into the zeolite. The constraint from the zeolite holes and coordination geometry caused the alteration of electronic structures and subsequently modified the reactivity. This study revealed that upon encapsulation, the larger molecular dimension of L3Cu(OAc) resulted in additional distorted geometry, leading to higher catalytic efficiency for MB degradation with more blue shifts in the UV-Vis spectrum. There was high catalytic activity by LnCu(OAc)-Y compared to that of the free complex, and high recyclability under near neutral conditions. In addition, the catalytic efficiency of L3Cu(OAc)-Y was higher or equivalent compared to other catalysts. This work provides new complexes with NNO tridentate ligands encapsulated inside zeolite and explains the relationship between the modified structure and functionality.

8.
Heliyon ; 10(1): e23915, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205335

RESUMO

Background: Tertiary lymphoid structure (TLS) is a unique organ that carries out tumor cell elimination at tumor sites. It is continuously stimulated by inflammatory tumor signals and has been found to augment immunotherapy response. However, the detailed mechanisms behind it still need to be defined. Methods: To explore and grasp the whole picture of TLS from a pan-cancer view, we collected nine TLS-related genes from previous studies. We performed a comprehensive analysis of 9637 samples across 33 tumor types accessed from The Cancer Genome Atlas (TCGA) database. EdU, Transwell, and flow cytometry were performed on the feature gene PTGDS in U251 cells. The regulatory role of PTGDS on PD-L1 expression and macrophage polarization was verified. Results: Alteration analysis showed that mutations of TLS-related genes were widespread and relatively high. Clustering analysis based on the expression of these nine genes obtained two distinct clusters, with high EIF1AY and PTGDS in cluster 2 and better overall survival in cluster 1. To distinguish the two clusters, we utilized six machine learning algorithms and filtrated EIF1AY, PTGDS, SKAP1, and RBP5 as the characteristic genes, among which the former two genes were proved to be hazardous. PTGDS was found to regulate PD-L1 expression and also promoted the proliferation and migration of U251 cells. The knockdown of PTGDS could reduce the migration of macrophages and inhibit the polarization of macrophages into M2-phenotype. In addition, we established a TLS score to demonstrate patients' TLS activity. The low TLS-score group overlapped with cluster 1 and displayed a better prognosis. Besides, the low TLS-score group was related to better immunotherapy responses. The HE staining of histopathological sections confirmed that the low TLS-score group exhibited higher infiltration of immune cells. Conclusion: This study reveals broad molecular, tumorigenic, and immunogenic signatures for further functional and therapeutic studies of tertiary lymphoid structure. The TLS score we established effectively predicted immunotherapy response and patients' survival. Its future application and combination await more research.

9.
Genes Dis ; 11(3): 101046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292174

RESUMO

Atherosclerotic cardiovascular disease and its complications are a high-incidence disease worldwide. Numerous studies have shown that blood flow shear has a huge impact on the function of vascular endothelial cells, and it plays an important role in gene regulation of pro-inflammatory, pro-thrombotic, pro-oxidative stress, and cell permeability. Many important endothelial cell mechanosensitive genes have been discovered, including KLK10, CCN gene family, NRP2, YAP, TAZ, HIF-1α, NF-κB, FOS, JUN, TFEB, KLF2/KLF4, NRF2, and ID1. Some of them have been intensively studied, whereas the relevant regulatory mechanism of other genes remains unclear. Focusing on these mechanosensitive genes will provide new strategies for therapeutic intervention in atherosclerotic vascular disease. Thus, this article reviews the mechanosensitive genes affecting vascular endothelial cells, including classical pathways and some newly screened genes, and summarizes the latest research progress on their roles in the pathogenesis of atherosclerosis to reveal effective therapeutic targets of drugs and provide new insights for anti-atherosclerosis.

10.
Commun Biol ; 7(1): 116, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253716

RESUMO

Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model.


Assuntos
Doenças Uterinas , Feminino , Humanos , Animais , Suínos , Endométrio , Calgranulina A/genética , Células Epiteliais , Inflamação , Janus Quinase 2/genética , Fator de Transcrição STAT3
11.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268415

RESUMO

AIMS: This study aimed to improve the production of mutantioxidin, an antioxidant encoded by a biosynthetic gene cluster (mao) in Streptococcus mutans UA140, through a series of optimization methods. METHOD AND RESULTS: Through the construction of mao knockout strain S. mutans UA140∆mao, we identified mutantioxidin as the antioxidant encoded by mao and verified its antioxidant activity through a reactive oxygen species (ROS) tolerance assay. By optimizing the culture medium and fermentation time, 72 h of fermentation in chemically defined medium (CDM) medium was determined as the optimal fermentation conditions. Based on two promoters commonly used in Streptococcus (ldhp and xylS1p), eight promoter refactoring strains were constructed, nevertheless all showed impaired antioxidant production. In-frame deletion and complementation experiments demonstrated the positive regulatory role of mao1 and mao2, on mao. Afterward, the mao1 and mao2, overexpression strain S. mutans UA140/pDL278:: mao1mao2, were constructed, in which the production of mutantioxidin was improved significantly. CONCLUSIONS: In this study, through a combination of varied strategies such as optimization of fermentation conditions and overexpression of regulatory genes, production of mutantioxidin was increased by 10.5 times ultimately.


Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Streptococcus mutans/genética , Antioxidantes , Streptococcus , Regiões Promotoras Genéticas , Monoaminoxidase/genética , Biofilmes , Cárie Dentária/prevenção & controle
12.
Int J Biol Macromol ; 254(Pt 2): 127637, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898240

RESUMO

STAT, a transcription factor in the JAK/STAT signaling pathway, regulates immune response to pathogens. In the silkworm (Bombyx mori), STAT exists as two split-forms, STAT-S and STAT-L. However, the role of STAT in silkworm immunity remains unclear. Our purpose was to investigate the effect of STAT on the expression of antimicrobial peptide (AMP) genes and resistance against pathogens. The expression levels of STAT-S and STAT-L were significantly up-regulated after induction by pathogenic microorganisms. In BmE cells, lipopolysaccharide (LPS), peptidoglycan (PGN) and ß-glucan stimulated STAT-S and STAT-L to transfer from the cytoplasm to the nucleus. We found that overexpression of STAT-S and STAT-L in cells could promote the expression of AMPs. We generated transgenic silkworm lines overexpressing STAT-L or STAT-S (OE-STAT-S; OE-STAT-L) or interfering with STAT (A4-dsSTAT). Overexpression of STAT-S and STAT-L upregulated the expression of AMP genes in the OE-STAT-S and OE-STAT-L, increased the survival rates of the OE-STAT-S silkworms and lowered the mortality of OE-STAT-L silkworms infected with S. aureus or Beauveria bassiana. By contrast, the death rate of A4-dsSTAT silkworms was higher after infection with these pathogenic microorganisms. These findings may provide insights into the role of STAT in the antimicrobial immune response of silkworms.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Fatores de Transcrição/genética , Staphylococcus aureus/metabolismo , Regulação da Expressão Gênica , Animais Geneticamente Modificados/metabolismo , Proteínas de Insetos/metabolismo
13.
Gastrointest Endosc ; 99(1): 91-99.e9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37536635

RESUMO

BACKGROUND AND AIMS: The efficacy and safety of colonoscopy performed by artificial intelligence (AI)-assisted novices remain unknown. The aim of this study was to compare the lesion detection capability of novices, AI-assisted novices, and experts. METHODS: This multicenter, randomized, noninferiority tandem study was conducted across 3 hospitals in China from May 1, 2022, to November 11, 2022. Eligible patients were randomized into 1 of 3 groups: the CN group (control novice group, withdrawal performed by a novice independently), the AN group (AI-assisted novice group, withdrawal performed by a novice with AI assistance), or the CE group (control expert group, withdrawal performed by an expert independently). Participants underwent a repeat colonoscopy conducted by an AI-assisted expert to evaluate the lesion miss rate and ensure lesion detection. The primary outcome was the adenoma miss rate (AMR). RESULTS: A total of 685 eligible patients were analyzed: 229 in the CN group, 227 in the AN group, and 229 in the CE group. Both AMR and polyp miss rate were lower in the AN group than in the CN group (18.82% vs 43.69% [P < .001] and 21.23% vs 35.38% [P < .001], respectively). The noninferiority margin was met between the AN and CE groups of both AMR and polyp miss rate (18.82% vs 26.97% [P = .202] and 21.23% vs 24.10% [P < .249]). CONCLUSIONS: AI-assisted colonoscopy lowered the AMR of novices, making them noninferior to experts. The withdrawal technique of new endoscopists can be enhanced by AI-assisted colonoscopy. (Clinical trial registration number: NCT05323279.).


Assuntos
Adenoma , Pólipos do Colo , Neoplasias Colorretais , Pólipos , Humanos , Inteligência Artificial , Estudos Prospectivos , Colonoscopia/métodos , Projetos de Pesquisa , Adenoma/diagnóstico , Adenoma/patologia , Pólipos do Colo/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico
14.
Cancer Lett ; 581: 216511, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38013049

RESUMO

Deciphering the mechanisms behind how T cells become exhausted and regulatory T cells (Tregs) differentiate in a tumor microenvironment (TME) will significantly benefit cancer immunotherapy. A common metabolic alteration feature in TME is lipid accumulation, associated with T cell exhaustion and Treg differentiation. However, the regulatory role of free fatty acids (FFA) on T cell antitumor immunity has yet to be clearly illustrated. Our study observed that palmitic acid (PA), the most abundant saturated FFA in mouse plasma, enhanced T cell exhaustion and Tregs population in TME and increased tumor growth. In contrast, oleic acid (OA), a monounsaturated FFA, rescued PA-induced T cell exhaustion, decreased Treg population, and ameliorated T cell antitumor immunity in an obese mouse model. Mechanistically, mitochondrial metabolic activity is critical in maintaining T cell function, which PA attenuated. PA-induced T cell exhaustion and Treg formation depended on CD36 and Akt/mTOR-mediated calcium signaling. The study described a new mechanism of PA-induced downregulation of antitumor immunity of T cells and the therapeutic potential behind its restoration by targeting PA.


Assuntos
Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Ácidos Graxos , Ácido Palmítico/farmacologia , Linfócitos T Reguladores , Serina-Treonina Quinases TOR , Microambiente Tumoral
15.
Nat Commun ; 14(1): 7502, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980414

RESUMO

Cyclic di-GMP (c-di-GMP) is a second messenger that transduces extracellular stimuli into cellular responses and regulates various biological processes in bacteria. H-NS is a global regulatory protein that represses expression of many genes, but how H-NS activity is modulated by environmental signals remains largely unclear. Here, we show that high intracellular c-di-GMP levels, induced by environmental cues, relieve H-NS-mediated transcriptional silencing in Salmonella enterica serovar Typhimurium. We find that c-di-GMP binds to the H-NS protein to inhibit its binding to DNA, thus derepressing genes silenced by H-NS. However, c-di-GMP is unable to displace H-NS from DNA. In addition, a K107A mutation in H-NS abolishes response to c-di-GMP but leaves its DNA binding activity unaffected in vivo. Our results thus suggest a mechanism by which H-NS acts as an environment-sensing regulator in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Salmonella typhimurium/metabolismo , Regulação Bacteriana da Expressão Gênica
16.
EClinicalMedicine ; 65: 102276, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954904

RESUMO

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately enhancing the quality of life for affected individuals and reducing the burden on healthcare systems. Methods: Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional- and network-based measures under an ensemble machine learning model based on structural MRI data. We systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD. Findings: IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative diseases, including Frontotemporal dementia (FTD), Parkinson's disease (PD), Vascular dementia (VaD) and Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52 [95% CI: 4.42∼9.62], p < 1 × 10-16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aß (HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10-14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10-15) based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = -0.70, p < 1 × 10-16) in capturing longitudinal changes in individuals with conversion to AD than CSF Aß (beta = -0.26, p = 4.40 × 10-9) and CSF Tau (beta = 0.12, p = 1.02 × 10-5). Interpretation: Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for application in future clinical practice and treatment trials. Funding: Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China, Beijing Natural Science Funds, the Fundamental Research Funds for the CentralUniversity, and the Startup Funds for Talents at Beijing Normal University.

17.
Front Pharmacol ; 14: 1290253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026943

RESUMO

Background: Dilated cardiomyopathy (DCM), a specific form of cardiomyopathy, frequently presents clinically with either left ventricular or biventricular enlargement, often leading to progressive heart failure. In recent years, the application of bioinformatics technology to scrutinize the onset, progression, and prognosis of DCM has emerged as a fervent area of interest among scholars globally. Methods: In this study, core genes closely related to DCM were identified through bioinformatics analysis, including weighted gene co expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) and so on. The correlation was verified through experiments on DCM patients, DCM rat models, and core gene knockout mice. Subsequently, the effects of glucocorticoids on DCM and the regulation of core genes were observed. Result: In the present study, natriuretic peptide receptor 1 (NPR1) was identified as a core gene associated with DCM through WGCNA and ssGSEA. Significant impairment of cardiac and renal function was observed in both DCM patients and rats, concomitant with a notable reduction in NPR1 expression. NPR1 KO mice displayed symptomatic manifestations of DCM, underscoring the pivotal role of NPR1 in its pathogenesis. Notably, glucocorticoid treatment led to substantial improvements in cardiac and renal function, accompanied by an upregulation of NPR1 expression. Discussion: These findings highlight the critical involvement of NPR1 in the pathophysiology of DCM and its potential as a key target for glucocorticoid-based DCM therapy. The study provides a robust theoretical and experimental foundation for further investigations into DCM etiology and therapeutic strategies.

18.
Front Pharmacol ; 14: 1265551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026991

RESUMO

Background: ShenQiWan is commonly used in traditional Chinese medicine for the treatment of diabetic nephropathy, which is closely related to mitochondrial fusion and endoplasmic reticulum stress. This study aimed to investigate the intervention effect and molecular mechanisms of ShenQiWan on renal injury in KKAy mice. Methods: C57BL/6J mice (11 weeks old) were fed a regular diet upon arrival, while KKAy mice (11 weeks old) were fed a high-fat diet upon arrival. At 12 weeks of age, KKAy mice with random blood glucose ≥13.9 mmol/L were identified as diabetic mice and randomly divided into the model group (n = 30) and the treatment group (n = 30), while C57BL/6J mice of 12 weeks old (n = 30) served as the control group. The treatment group received daily aqueous decoction of ShenQiWan (13.5 g/kg), while the control group and model group received daily equal amounts of saline from 12 weeks old to 24 weeks old. The general status of mice was observed regularly, and fasting blood glucose and 24-hour urine microalbumin were measured. Ten mice were euthanized in each group at the age of 16, 20, and 24 weeks, serum samples were used for biochemical indexes and kidney tissues were used for morphological studies. GRP78, OPA1, MFN1, MFN2 mRNA and protein expression were detected by Real-time PCR, immunohistochemistry and Western blot. Results: The mice in the model group exhibited symptoms of lethargy, slow movement, obesity, polyuria and proteinuria. Morphological observation revealed pathological changes, including thickening of the glomerular basement membrane and interstitial fibrosis. After treatment with ShenQiWan, the fasting blood glucose level of KKAy mice was significantly reduced, urinary albuminuria was decreased, serum biochemical indexes were improved, renal tissue pathological changes were significantly alleviated. The results also showed a significant reduction in the expression of endoplasmic reticulum stress-related factor GRP78 and an increase in the expression of mitochondrial fusion-related factors OPA1, MFN1 and MFN2 after treatment with ShenQiWan. Conclusion: ShenQiWan can protect diabetic mice from renal damage by modulating mitochondrial fusion and alleviating endoplasmic reticulum stress, exerting its protective effects.

19.
Curr Biol ; 33(21): 4557-4569.e3, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37788666

RESUMO

For correct chromosome segregation in mitosis, sister kinetochores must interact with microtubules from opposite spindle poles (biorientation). For this, aberrant kinetochore-microtubule interaction must be resolved (error correction) by Aurora B kinase. Once biorientation is formed, tension is applied on kinetochore-microtubule interaction, stabilizing this interaction. The mechanism for this tension-dependent process has been debated. Here, we study how Aurora B localizations at different kinetochore sites affect the biorientation establishment and maintenance in budding yeast. Without the physiological Aurora B-INCENP recruitment mechanisms, engineered recruitment of Aurora B-INCENP to the inner kinetochore, but not to the outer kinetochore, prior to biorientation supports the subsequent biorientation establishment. Moreover, when the physiological Aurora B-INCENP recruitment mechanisms are present, an engineered Aurora B-INCENP recruitment to the outer kinetochore, but not to the inner kinetochore, during metaphase (after biorientation establishment) disrupts biorientation, which is dependent on the Aurora B kinase activity. These results suggest that the spatial separation of Aurora B from its outer kinetochore substrates is required to stabilize kinetochore-microtubule interaction when biorientation is formed and tension is applied on this interaction. Meanwhile, Aurora B exhibits dynamic turnover on the centromere/kinetochore during early mitosis, a process thought to be crucial for error correction and biorientation. However, using the engineered Aurora B-INCENP recruitment to the inner kinetochore, we demonstrate that, even without such a turnover, Aurora B-INCENP can efficiently support biorientation. Our study provides important insights into how Aurora B promotes error correction for biorientation in a tension-dependent manner.


Assuntos
Segregação de Cromossomos , Cinetocoros , Aurora Quinase B/genética , Centrômero , Microtúbulos , Mitose
20.
Endoscopy ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37827513

RESUMO

BACKGROUND: The choice of polypectomy device and surveillance intervals for colorectal polyps are primarily decided by polyp size. We developed a deep learning-based system (ENDOANGEL-CPS) to estimate colorectal polyp size in real time. METHODS: ENDOANGEL-CPS calculates polyp size by estimating the distance from the endoscope lens to the polyp using the parameters of the lens. The depth estimator network was developed on 7297 images from five virtually produced colon videos and tested on 730 images from seven virtual colon videos. The performance of the system was first evaluated in nine videos of a simulated colon with polyps attached, then tested in 157 real-world prospective videos from three hospitals, with the outcomes compared with that of nine endoscopists over 69 videos. Inappropriate surveillance recommendations caused by incorrect estimation of polyp size were also analyzed. RESULTS: The relative error of depth estimation was 11.3% (SD 6.0%) in successive virtual colon images. The concordance correlation coefficients (CCCs) between system estimation and ground truth were 0.89 and 0.93 in images of a simulated colon and multicenter videos of 157 polyps. The mean CCC of ENDOANGEL-CPS surpassed all endoscopists (0.89 vs. 0.41 [SD 0.29]; P<0.001). The relative accuracy of ENDOANGEL-CPS was significantly higher than that of endoscopists (89.9% vs. 54.7%; P<0.001). Regarding inappropriate surveillance recommendations, the system's error rate is also lower than that of endoscopists (1.5% vs. 16.6%; P<0.001). CONCLUSIONS: ENDOANGEL-CPS could potentially improve the accuracy of colorectal polyp size measurements and size-based surveillance intervals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...